ITKeyword,专注技术干货聚合推荐

注册 | 登录

《Linux Device Drivers》 第十七章 网络驱动程序——note

luopingfeng 分享于

2020腾讯云双十一活动,全年最低!!!(领取3500元代金券),
地址https://cloud.tencent.com/act/cps/redirect?redirect=1073

2020阿里云最低价产品入口,含代金券(新老用户有优惠),
地址https://www.aliyun.com/minisite/goods

推荐:《Linux Device Drivers》第十三章 USB驱动程序——note

    1. USB主机 在Linux驱动中,USB驱动处于最底层的是USB主机控制器硬件,在其之上运行的是USB主机控制器驱动,主机控制器之上为USB核心层,再上层为USB设备驱

  • 简介
    • 网络接口是第三类标准Linux设备,本章将描述网络接口是如何与内核其余的部分交互的
    • 网络接口必须使用特定的内核数据结构注册自身,以备与外界进行数据线包交换时调用
    • 对网络接口的常用文件操作是没有意义的,因此在它们身上无法体现Unix的“一切都是文件”的思想
    • 网络驱动程序异步自外部世界的数据包
    • 网络设备向内核请求把外部获得的数据包发送给内核
    • Linux内核中的网络子系统被设计成完全与协议无关
    • 在网络世界中使用术语“octet”指一组8个的数据位,它是能为网络设备和协议所能理解的最小单位
    • 协议头(header)是在数据包中的一系列字节,它将通过网络子系统的不同层
  • 连接到内核
    • loopback.c、plip.c和e100.c
    • 设备注册
      • 驱动程序对每个新检测到的接口,向全局的网络设备链表中插入一个数据结构
      • <linux/netdevice.h>
      • struct net_device
      • struct net_device *alloc_netdev(int sizeof_priv, const char *name, void (*setup) (struct net_device *));
        • name是接口的名字,这个名字可以使用类似printf中%d的格式,内核将用下一个可用的接口号替代%d
      • <linux/etherdevie.h>
        • struct net_device *alloc_etherdev(int sizeof_priv);
      • 光纤通道设备使用alloc_fcdev(<linux/fcdevice.h>)
      • FDDI设备使用alloc_fddidev(<linux/fddidevice.h>)
      • 令牌环设备使用alloc_trdev(<linux/trdevice.h>)
      • register_netdev函数
    • 初始化每个设备
      • example
        • ether_setup(dev);
        • dev->open = open_function;
        • dev->stop = release_function;
        • dev->set_config = config_function;
        • dev->hard_start_xmid = tx_function;
        • dev->do_ioctl = ioctl_function;
        • dev->get_stats = stats_function;
        • dev->rebuild_header = rebuild_header_function;
        • dev->hard_header = header_function;
        • dev->tx_timeout = tx_timeout_function;
        • dev->watchdog_timo = timeout;
        • dev->flags |= IFF_NOARP;
        • dev->features |= NETIF_F_NO_CSUM;
        • dev->hard_header_cache = NULL;
      • priv = netdev_priv(dev);
    • 模块的卸载
      • unregister_netdev函数从系统中删除接口
      • free_netdev函数将net_device结构返回给系统

  • net_device结构细节
    • 全局信息
      • char name[IFNAMSIZ];
      • unsigned long state;
      • struct net_device *next;
      • int (*init) (struct net_device *dev);
    • 硬件信息
      • unsigned long rmem_end;
      • unsigned long rmem_start;
      • unsigned long mem_end;
      • unsigned long mem_start;
      • unsigned long base_addr;
      • unsigned char irq;
      • unsigned char if_port;
      • unsigned char dma;
    • 接口信息
      • drivers/net/net_init.c
      • void ltalk_setup(struct net_device *dev);
      • void fs_setup(struct net_device *dev);
      • void fddi_setup(struct net_device *dev);
      • void hippi_setup(struct net_device *dev);
      • void tr_setup(struct net_device *dev);
      • unsigned short hard_header_len;
        • 对以太网接口,该值是14
      • unsigned mtu;
        • 最大传输单元,以太网的MTU是1500个octet
      • unsigned long tx_queue_len;
      • unsigned short type;
        • ARP使用type成员判断接口所支持的硬件地址类型
        • <linux/if_arp.h>
      • unsigned char addr_len;
      • unsigned char broadcast[MAX_ADDR_LEN];
      • unsigned char dev_addr[MAX_ADDR_LEN];
      • unsigned short flags;
      • int features;
        • 该标志成员是一个位掩码
        • IFF_前缀表示“接口标志”,有效的标志定义在<linux/if.h>
    • 设备方法
      • 网络接口的设备方法可划分为两个类型:基本的和可选的
      • 基本方法
        • int (*open) (struct net_device *dev);
        • int (*stop) (struct net_device *dev);
        • int (*hard_start_xmit) (struct sk_buff *skb, struct net_device *dev);
        • int (*hard_header) (struct sk_buff *skb, struct net_device *dev, unsigned short type, void *daddr, void *saddr, unsigned len);
        • int (*rebuild_header) (struct sk_buff *skb);
        • void (*tx_timeout) (struct net_device *dev);
        • struct net_device_stats *(*get_stats) (struct net_device *dev);
        • int (*set_config) (struct net_device *dev, struct ifmap *map);
      • 可选方法
        • int (*poll) (struct net_device *dev, int *quota);
        • void (*poll_controller) (struct net_device *dev);
        • int (*do_ioctl) (struct net_device *dev, struct ifreq *ifr, int cmd);
        • void (*set_multicast_list) (struct net_device *dev);
        • int (*set_mac_address) (struct net_device *dev, void *addr);
        • int (*change_mtu) (struct net_device *dev, int net_mtu);
        • int (*header_cache) (struct neighbour *neigh, struct hh_cache *hh);
        • int (*header_cache_update) (struct hh_cache *hh, struct net_device *dev, unsigned char *haddr);
        • int (*hard_header_parse) (struct sk_buff *skb, unsigned char *haddr);
    • 工具成员
      • unsigned long trans_start;
      • unsigned long last_rx;
      • int watchdog_timeo;
      • void *priv;
      • struct dev_mc_list *mc_list;
      • int mc_count;
      • spinlock_t xmit_lock;
      • int xmit_lock_owner;
  • 打开和关闭
    • 在使用ifconfig向接口赋予地址时,要执行两个任务
      • 首先,通过ioctl(SIOCSIFADDR)赋予地址
      • 然后,通过ioctl(SIOCSIFFLAGS)设置dev->flag中的IFF_UP标志以打开接口
    • 对设备而言,无需对ioctl(SIOCSIFADDR)做任何工作,后一个命令会调用设备的open方法
    • 在接口被关闭时,ifconfig使用ioctl(SIOSIFFLAGS)来清除IFF_UP标志,然后调用stop函数
    • 此外,还要执行其他一些步骤
      • 首先,在接口有够和外界通讯之前,要将硬件地址(MAC)从硬件设备复制到dev->dev_addr
      • 应该启动接口的传输队列
        • void netif_start_queue(struct net_device *dev);
  • 数据包传输
    • 无论何时内核要传输一个数据包,它都会调用驱动程序的hard_start_transmit函数将数据放入外发队列
    • 内核处理的每个数据包位于一个套接字缓冲区结构(sk_buff)中,该结构定义在<linux/skbuff.h>中
    • 传递经全hard_start_xmit的套接字缓冲区包含了物理数据包,并拥有完整的传输层数据包头
    • 该传输函数只执行了对数据包的一致性检查,然后通过硬件相关的函数传输数据
    • 如果执行成功,则hard_start_xmit返回0
    • 控制并发传输
      • 通过net_device结构中的一个自旋锁获得并发调用时的保护
      • 实际的硬件接口是异步传输数据包的,而且可用来保存外发数据包的存储空间非常有限
      • void netif_wake_queu(struct net_device *dev);
        • 通知网络系统可再次开始传输数据包
      • void netif_tx_disable(struct net_device *dev);
        • 禁止数据包的传送
    • 传输超时
      • 如果当前的系统时间超过设备的trans_start时间至少一个超时周期,网络层将最终调用驱动程序的tx_timeout函数
    • Scatter/Gather I/O
      • 在网络上为传输工作创建数据包的过程,包括了组装多个数据片段的过程
      • 如果负责发送数据包的网络接口实现了分散/聚焦I/O,则数据包就不用组装成一个大的数据包
      • 分散/聚焦I/O还能用“零拷贝”的方法,

        推荐:《Linux Device Drivers》第十二章 PCI驱动程序——note

        简介 本章给出一个高层总线架构的综述 讨论重点是用于访问Peripheral Component Interconnect(PCI,外围设备互联)外设的内核函数 PCI总线是内核中得到最好支持

        把网络数据直接从用户缓冲区内传输出来
      • 如果在device结构中的feature成员内设置了NETIF_F_SG标志位,内核才将分散的数据包传递给hard_start_xmit函数
      • struct skb_frag_struct
        • struct page *page;
        • __u16 page_offset;
        • __u16 size;
  • 数据包的接收
    • 从网络上接收数据要比传输数据复杂一点,因为必须在原子上下文中分配一个sk_buff并传递给上层处理
    • 网络驱动程序实现了两种模式接收数据包:中断驱动方式和轮询方式
    • 过程
      • 第一步是分配一个保存数据包的缓冲区
        • dev_alloc_skb
      • 检查dev_alloc_skb函数的返回值
      • 一旦拥有一个合法的skb指针,则调用memcpy将数据包数据拷贝到缓冲区内
      • 最后,驱动程序更新其统计计数器
    • 接收数据包过程中的最后一个步骤由netif_rx执行
  • 中断处理例程
    • 接口在两种可能的事件下中断处理器
      • 新数据包到达
      • 外发数据包的传输已经完成
    • 通常中断例程通过检查物理设备中的状态寄存器,以区分新数据包到达中断和数据传输完毕中断
    • 传输结束时,统计信息要被更新,而且要将套接字缓冲区返回全系统
      • dev_kfree_skb(struct sk_buff *skb);
      • dev_kfree_skb_irq(struct sk_buff *skb);
      • dev_kfree_skb_any(struct sk_buff *skb);
  • 不使用接收中断
    • 为了能提高Linux在宽带系统上的性能,网络子系统开发者创建了另外一种基于轮询方法的接口(称之为NAPI)
    • 停止使用中断会减轻处理器的负荷
    • struct net_device的poll成员必须设置为驱动程序的轮询函数
    • 当接口通知数据到达的时候,中断程序不能处理该数据包,相反它还要禁止接收中断,并且告诉内核,从现在开始启动轮询接口
    • 用netif_receive_skb函数将数据包传递给内核,而不是使用netif_rx
    • 调用netif_rx_complete关闭轮询函数
  • 链路状态的改变
    • 大多数涉及实际的物理连接的网络技术提供载波状态信息,载波的存在意味着硬件功能是正常的
    • void netif_carrier_off(struct net_device *dev);
    • void netif_carrier_on(struct net_device *dev);
    • int netif_carrier_ok(struct net_device *dev);
      • 用来检测当前的载波状态
  • 套接字缓冲区
    • <linux/skbuff.h>
    • 重要的成员
      • struct net_device *dev
      • union { /* … */ } h;
      • union { /* … */ } nh;
      • union { /* … */ } mac;
      • unsigned char *head;
      • unsigned char *data;
      • unsigned char *tail;
      • unsigned char *end;
      • unsigned int len;
      • unsigned int data_len;
      • unsigned char ip_summed;
      • unsigned char pkt_type;
      • shinfo (struct sk_buff *skb);
      • unsigned int shinfo(skb)->nr_frags;
      • skb_frag_t shinfo(skb)->frags;
    • 操作套接字缓冲区的函数
      • struct sk_buff *alloc_skb(unsigned int len, int priority);
      • struct sk_buff *dev_alloc_skb(unsigned int len);
      • void kfree_skb(struct sk_buff *skb);
      • void dev_kfree_skb(struct sk_buff *skb);
      • void dev_kfree_skb_irq(struct sk_buff *skb);
      • void dev_kfree_skb_any(struct sk_buff *skb);
      • unsigned char *skb_put(struct sk_buff *skb, int len);
      • unsigned char *__skb_put(struct sk_buff *skb, int len);
      • unsigned char *skb_push(struct sk_buff *skb, int len);
      • unsigned char *__skb_push(struct sk_buff *skb, int len);
      • int skb_tailroom(struct sk_buff *skb);
      • int skb_headroom(struct sk_buff *skb);
      • void skb_reserve(struct sk_buff *skb, int len);
      • unsigned char *skb_pull(struct sk_buff *skb, int len);
      • int skb_is_nonlinear(struct sk_buff *skb);
      • int skb_headlen(struct sk_buff *skb);
      • void *kmap_skb_frag(skb_frag_t *frag);
      • void kunmap_skb_frag(void *vaddr);
  • MAC地址解析
    • 在以太网中使用ARP
      • ARP由内核维护,而以太网接口不需要做任何特殊工作就能支持ARP
    • 重载ARP
      • 如果设备希望使用常用的硬件头,而不运行ARP,则需要重载默认的dev->hard_header函数
    • 非以太网头
      • 硬件头中除目标地址之外,还包含其他一些信息,其中最重要的是通信协议
      • drivers/net/appletalk/cops.c
      • drivers/net/irda/smc_ircc.c
      • drivers/net/pp_generic.c
  • 定制ioctl命令
    • 当为某个套接字使用ioctl系统调用时,命令号是定义在<linux/sockios.h>中的某个符号
    • 函数sock_ioctl直接调用一个协议相关的函数
    • 任何协议层不能识别的ioctl命令都会传递到设备层
    • 这些设备相关的ioctl命令从用户空间接受第三个参数,即一个struct ifreq *指针
      • <linux/if.h>
  • 统计信息
    • 驱动程序需要的最后一个函数是get_stats,这个函数返回设备统计结构的指针
    • struct net_device_stats
      • unsigned long rx_packets;
      • unsigned long tx_packets;
      • unsigned long rx_bytes;
      • unsigned long tx_bytes;
      • unsigned long rx_errors;
      • unsigned long tx_errors;
      • unsigned long rx_dropped;
      • unsigned long tx_dropped;
      • unsigned long collisions;
      • unsigned long multicast;
  • 组播
    • 对以太网而言,组播地址在目标地址的第一个octet的最低位设置为1,而所有设备板卡将自己的硬件地址的相应位清零
    • 内核在任意给定时刻均要跟踪组播地址
    • 驱动程序实现组播清单的方法,在某种程序上依赖于底层硬件的工作方式
    • 通常来说,考虑组播时,硬件可划分为三类
      • 不有处理组播的接口
      • 能够区分组播数据包和其他数据包的接口
      • 能够为组播地址进行硬件检测的接口
    • 对组播的内核支持
      • 对组播数据包的支持由如下几项组成:一个设备函数、一个数据结构以及若干设备标志
      • void (*dev_set_multicast_list) (struct net_device *dev);
      • struct dev_mc_list *dev->mc_list;
      • int dev->mc_count;
      • <linux/netdevice.h>
      • struct dev_mc_list
        • struct dev_mc_list *next
        • __u8 dmi_addr[MAX_ADDR_LEN];
        • unsigned char dmi_addrlen;
        • int dmi_users;
        • int dmi_gusers;
  • 其他知识点详解
    • 对介质无关接口的支持
      • 介质无关接口(Media Independent Interface, MII)是一个IEEE802.3标准,它描述了以太网收发器是如何与网络控制器连接的
      • <linux/mii.h>
      • int (*mdio_read) (struct net_device *dev, int phy_id, int location);
      • void (*mdio_write) (struct net_device *dev, int phy_id, int location, int val);
      • drivers/net/mii.c
    • ethtool支持
      • ethtool是为系统管理员提供的用于控制网络接口的工具
      • 只有当驱动程序支持ethtool时,使用ethtool才能控制包括速度、介质类型、双工操作、DMA设置、硬件检验、LAN唤醒操作在内的许多接口参数
      • http://sf.net/projects/gkernel/
      • <linux/ethtool.h>
      • struct ethtool_ops
    • Netpoll
      • 它出现的目的是让内核在网络和I/O子系统尚不能完整可用时,依然能发送和接收数据包
      • 用于网络控制台和远程内核调试
      • 实现netpoll的驱动程序需要实现poll_controller函数,作用是在缺少设备中断时,还能对控制器做出响应

推荐:《Linux Device Drivers》第十八章 TTY驱动程序——note

简介 tty设备的名称是从过去的电传打字机缩写而来,最初是指连接到Unix系统上的物理或虚拟终端 Linux tty驱动程序的核心紧挨在标准字符设备驱动层之下,并提供了

简介 网络接口是第三类标准Linux设备,本章将描述网络接口是如何与内核其余的部分交互的 网络接口必须使用特定的内核数据结构注册自身,以备与外界进行数据线包交换时调用 对网络接口的常用文件

相关阅读排行


相关内容推荐

最新文章

×

×

请激活账号

为了能正常使用评论、编辑功能及以后陆续为用户提供的其他产品,请激活账号。

您的注册邮箱: 修改

重新发送激活邮件 进入我的邮箱

如果您没有收到激活邮件,请注意检查垃圾箱。